Abstract

Molecules, capable of fluorescence turn-on by light, are highly sought-after in spatio-temporal labeling, surface patterning, monitoring cellular and molecular events, and high-resolution fluorescence imaging. In this work, we report a fluorescence turn-on system based on photoinitiated intramolecular C-H insertion of azide into the neighboring aromatic ring. The azide-masked fluorogens were efficiently synthesized via a cascade nucleophilic aromatic substitution of perfluoroaryl azides with carbazoles. The scaffold also allows for derivatization with biological ligands, as exemplified with d-mannose in this study. This photoinitiated intramolecular transformation led to high yields, high photo-conversion efficiency, and well-separated wavelengths for photoactivation and fluorescence excitation. The mannose-derivatized structure enabled spatio-temporal activation and showed high contrast and signal amplification. Live cell imaging suggested that the mannose-tagged fluorogen was transported to the lysosomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.