Abstract
One of the features of photoacoustic (PA) imaging is small-vessel visualization realized without injection of a contrast agent or exposure to X-rays. For carrying out clinical studies in this field, a prototype PA imaging system has been developed. The PA imaging system utilizes a technological platform of FUJIFILM’s clinical ultrasound (US) imaging system mounting many-core MPU for enhancing the image quality of US B-mode and US Doppler mode, which can be superposed onto PA images. By evaluating the PA and US Doppler images of the prototyped system, the applicability of the prototype system to small-vessel visualization has been discussed. The light source for PA imaging was on a compact cart of a US unit and emitted 750 nm wavelength laser pulses. The laser light was transferred to illumination optics in a handheld US transducer, which was connected to the US unit. Obtained PA rf data is reconstructed into PA images in the US unit. 3D images were obtained by scanning a mechanical stage, which the transducer is attached to. Several peripheral parts such as fingers, palms and wrists were observed by PA and US Doppler imaging. As for small arteries, US Doppler images were able to visualize the bow-shaped artery in the tip of the finger. Though PA images cannot distinguish arteries and veins, it could visualize smaller vessels and showed good resolution and vascular connectivity, resulting in a complementary image for the US Doppler images. Therefore, superposed images of the PA, US B-mode and US Doppler can visualize from large to small vessels without a contrast agent, which should be a differentiating feature of US/PA combined technology from other clinical vascular imaging modalities.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.