Abstract

Photothermal therapy is a noninvasive, targeted, laser-based technique for cancer treatment. During photothermal therapy, light energy is converted to heat by tumor-specific photoabsorbers. The corresponding temperature rise causes localized cancer destruction. For effective treatment, however, the presence of photoabsorbers in the tumor must be ascertained before therapy and thermal imaging must be performed during therapy. This study investigates the feasibility of guiding photothermal therapy by using photoacoustic imaging to detect photoabsorbers and to monitor temperature elevation. Photothermal therapy is carried out by utilizing a continuous wave laser and metal nanocomposites broadly absorbing in the near-infrared optical range. A linear array-based ultrasound imaging system is interfaced with a nanosecond pulsed laser to image tissue-mimicking phantoms and ex-vivo animal tissue before and during photothermal therapy. Before commencing therapy, photoacoustic imaging identifies the presence and spatial location of nanoparticles. Thermal maps are computed by monitoring temperature-induced changes in the photoacoustic signal during the therapeutic procedure and are compared with temperature estimates obtained from ultrasound imaging. The results of our study suggest that photoacoustic imaging, augmented by ultrasound imaging, is a viable candidate to guide photoabsorber-enhanced photothermal therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.