Abstract

Thrombosis is a main cause of acute cardiovascular events, and detecting thrombi in small arteries via noninvasive imaging remains challenging. In this study, we employed a novel imaging method, photoacoustic imaging (PAI), to study thrombosis in a mouse model of ferric chloride (FeCl<sub>3</sub>)-induced arterial thrombosis and compared the ability of this method to detect thrombosis with that of a conventional imaging method, namely, ultrasound. The mice (n = 20) were divided equally into the following 4 groups: (1) a normal group, and (2) 3 experimental groups, in which the left common carotid artery was treated with 20% FeCl<sub>3</sub> for 1, 3, or 5 min, respectively. After 24 h, PAI detected thrombi of different sizes and generated images, enabling us to assess the changes in structure. The results of this study suggest that PAI is a useful, noninvasive visualization tool for investigating the mechanism underlying thrombosis development and is suitable for imaging arterial thrombosis in mouse carotid arteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call