Abstract

BackgroundActivated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis.Methodology/Principal FindingsLIBS as well as an unspecific control single-chain antibody were labeled with 111Indium (111In) via bifunctional DTPA ( = 111In-LIBS/111In-control). Autoradiography after incubation with 111In-LIBS on activated platelets in vitro (mean 3866±28 DLU/mm2, 4010±630 DLU/mm2 and 4520±293 DLU/mm2) produced a significantly higher ligand uptake compared to 111In-control (2101±76 DLU/mm2, 1181±96 DLU/mm2 and 1866±246 DLU/mm2) indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of 111In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630±10650 DLU/mm2 vs. 17390±7470 DLU/mm2; P<0.05). These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with 111In-LIBS resulted in a significant increase of the target-to-background ratio compared to 111In-control (1.99±0.36 vs. 1.1±0.24; P<0.01).Conclusions/SignificanceNuclear imaging with 111In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of activated platelets in plaque pathology and atherosclerosis and might be of interest for further developments towards clinical application.

Highlights

  • Molecular imaging of cells or cellular epitopes is a rapidly evolving field, which allows non-invasive detection of vascular pathologies [1,2]

  • As target we addressed ligand-induced binding sites (LIBS), an epitope that is exposed by an activation-specific epitope of the platelet glycoprotein IIb/IIIa-receptor at the site of thrombus formation

  • We describe the construction of a radioligand based on a singlechain antibody targeting activated platelets in an in vivo mouse model of wall-adherent non-occlusive thrombosis in the carotid artery, which imitates the surface of an inflamed or ruptured plaque

Read more

Summary

Introduction

Molecular imaging of cells or cellular epitopes is a rapidly evolving field, which allows non-invasive detection of vascular pathologies [1,2]. Targeting of surface epitopes in atherosclerosis has been described in various animal models, allowing detection of early atherosclerosis or thrombus formation in arterial vessels [3,4,5]. Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call