Abstract

Methodology and demonstration how to utilize the photoacoustic technique in photosynthesis research are presented. Photoacoustic signals were obtained from suspensions of isolated broken chloroplasts. In the presence of strong, continuous (non-modulated) background light the signals were normally larger than without the background light. The effect of the background light was saturable and was absent when non-active (e.g. heat-treated) samples were used, showing that the normal smaller signal in the absence of background light is a genuine reflection of the loss of heat due to the competing photochemistry. The effect of the background light is to close the reaction-centers and hence to inhibit the photochemical process. The percent difference of the photoacoustic signal (± background light) is taken as a measure of the photochemical activity (‘photochemical loss’). Initial results demonstrate the wavelength dependence of the ‘photochemical loss’. As expected there was a ‘red-drop’ decrease of the ‘photochemical loss’ for λ > 690 nm, when the cofactor methyl viologen was present. Surprisingly, however, there was a ‘red-rise’ increase for λ > 690 nm when no cofactor was present. These findings indicate that under the last conditions there is an unsuspected photoactivity of PS I which was not detected hitherto by the conventional techniques. The dependence on the background light intensity confirms this result. This photoactivity can be explained tentatively as a cyclic electron flow around PS I, present without any added cofactor. Initial results on the modulation frequency dependence in the presence of electron acceptors are also demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.