Abstract

Neural interfaces using biocompatible scaffolds provide crucial properties, such as cell adhesion, structural support, and mass transport, for the functional repair of nerve injuries and neurodegenerative diseases. Neural stimulation has also been found to be effective in promoting neural regeneration. This work provides a generalized strategy to integrate photoacoustic (PA) neural stimulation into hydrogel scaffolds using a nanocomposite hydrogel approach. Specifically, polyethylene glycol (PEG)-functionalized carbon nanotubes (CNT), highly efficient photoacoustic agents, are embedded into silk fibroin to form biocompatible and soft photoacoustic materials. We show that these photoacoustic functional scaffolds enable nongenetic activation of neurons with a spatial precision defined by the area of light illumination, promoting neuron regeneration. These CNT/silk scaffolds offered reliable and repeatable photoacoustic neural stimulation, and 94% of photoacoustic-stimulated neurons exhibit a fluorescence change larger than 10% in calcium imaging in the light-illuminated area. The on-demand photoacoustic stimulation increased neurite outgrowth by 1.74-fold in a rat dorsal root ganglion model, when compared to the unstimulated group. We also confirmed that promoted neurite outgrowth by photoacoustic stimulation is associated with an increased concentration of neurotrophic factor (BDNF). As a multifunctional neural scaffold, CNT/silk scaffolds demonstrated nongenetic PA neural stimulation functions and promoted neurite outgrowth, providing an additional method for nonpharmacological neural regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.