Abstract

Contrast-enhanced photoacoustics and ultrasonics are complementary methods of bioimaging. In this study, a flow-focusing junction microfluidic device is used for the generation of uniform microbubbles (<5 μm) for simultaneous enhancement of photoacoustic and ultrasound imaging. Microbubbles stabilized with a mixture of a recombinant protein and a synthetic amphiphilic block copolymer are functionalized with an FDA-approved photoacoustic dye, methylene blue (MetB). These microbubbles are uniform in size and stable. We show that the ultrasound and photoacoustic signals can be independently controlled by changing the concentration of MetB during microbubble preparation and the concentration of MetB-functionalized microbubbles in the probe suspension. We also perform animal tests to demonstrate the enhancement of ultrasound and acoustic signals upon injection of MetB-functionalized microbubbles in mice. The increase in the sonographic and photoacoustic signals is visibly obvious in the images. Taken together, MetB-functionalized microbubbles represent promising dual-mode ultrasound and photoacoustic imaging contrast agents for theranostic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.