Abstract

Designing an inexpensive, easily synthesized, stable and efficient photocatalyst is a major challenge in photocatalysis area, especially when photo-reaction is performed in aquatic medium to degrade organic pollutants. To this aim, nano-sized MIL-101(Cr) (MIL = Materials Institute Lavoisier), as chemically tolerant metal-organic framework (MOF), was simply prepared via HF-free hydrothermal synthesis procedure. In order to decorate amorphous FeOOH quantum dots (QDs) on the surface of this MOF, various amounts of FeOOH QDs (i.e., 5, 10, 15 and 20 wt%) were synthesized in the presence of MIL-101(Cr) to prepare MIL-101(Cr)/FeOOH(x%) nanocomposites. Decoration of such iron oxide quantum dots on the surface of MIL-101(Cr) and investigation of its activity in photo-Fenton degradation of tetracycline (TC) antibiotic is reported here for the first time. Among the synthesized nanocomposites, MIL-101(Cr)/FeOOH(15%) demonstrated superior photo-Fenton activity in degradation of TC (80%) at short reaction time under optimum reaction condition using the energy-efficient white LED lamps as visible light source. It was observed that the synergy between any component of this photo-Fenton system such as nanocomposite, hydrogen peroxide and visible light is the main reason for enhancement of TC removal over time. Also, neither MIL-101(Cr) nor FeOOH QDs exhibited poor degradation efficiency, which implies the positive role of the coupling of these materials. Furthermore, the stability and recoverability of MIL-101(Cr)/FeOOH(15%) nanocomposite was investigated in four photo-Fenton cycles, which no significant decrease in TC degradation performance was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call