Abstract

Proposes an easy and reproducible vapor-phase photo surface treatment method to improve the device performance of the Hg/sub 0.8/Cd/sub 0.2/Te photoconductive detector. We explore the effect of surface passivation on the electrical and optical properties of the HgCdTe photoconductor. Experimental results, including surface mobility, surface carrier concentration, metal-insulator-semiconductor leakage current, 1/f noise voltage spectrum, the 1/f knee frequency, responsivity R/sub /spl lambda//, and specific detectivity D* for stacked photo surface treatment and ZnS or CdTe passivation layers are presented. These data are all directly related to the quality of the interface between the passivation layer and the HgCdTe substrate. We found that, by inserting a photo native oxide layer, we can shift the 1/f knee frequency, reduce the noise power spectrum, and achieve a lower surface recombination velocity S. A higher D* can also be achieved. It was also found that HgCdTe photoconductors passivated with stacked layers show improved interface properties compared to the photoconductors passivated only with a single ZnS or CdTe layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.