Abstract

We characterized the radiation response in the visible domain of a new multimode graded-index (GI) phosphosilicate optical fiber (GIMMF), exposed to the harsh environment (pulses of 14-MeV neutrons, X-rays, and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\gamma $ </tex-math></inline-formula> -rays) associated with laser experiments at the OMEGA facility. The growth of permanent radiation-induced attenuation (RIA) was measured in situ after a series of laser shots involving a large production of 14-MeV neutrons (yields > <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$10^{{14}}$ </tex-math></inline-formula> n per shot). RIA linearly increases with accumulated neutron fluence without recovery between shots. The obtained results allow a precise evaluation of this GIMMF vulnerability when implemented as part of laser or plasma diagnostics. Our work also reveals the potential of this class of optical fiber to serve as a radiation monitor in the radiation-rich mixed environments of megajoule class laser facilities and to provide a very fast and online estimation of the accumulated deposited dose at various locations of their experimental halls. In our experimental test configuration at OMEGA, 14-MeV neutrons are estimated to contribute to about 55% of the total deposited dose on the fibers, and the other optical losses are related to X-ray and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\gamma $ </tex-math></inline-formula> -ray contributions. Those measurements could be, for example, benchmarked to the radiation maps obtained by Monte Carlo simulation tools, potentially facilitating the evaluation of the aging of diagnostics, components, and systems as well as their maintenance operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call