Abstract

L-type Ca(2+) currents conducted by CaV1.2 channels initiate excitation-contraction coupling in the heart. Their activity is increased by β-adrenergic/cAMP signaling via phosphorylation by PKA in the fight-or-flight response, but the sites of regulation are unknown. We describe the functional role of phosphorylation of Ser1700 and Thr1704-sites of phosphorylation by PKA and casein kinase II at the interface between the proximal and distal C-terminal regulatory domains. Mutation of both residues to Ala in STAA mice reduced basal L-type Ca(2+) currents, due to a small decrease in expression and a substantial decrease in functional activity. The increase in L-type Ca(2+) current caused by isoproterenol was markedly reduced at physiological levels of stimulation (3-10 nM). Maximal increases in calcium current at nearly saturating concentrations of isoproterenol (100 nM) were also significantly reduced, but the mutation effects were smaller, suggesting that alternative regulatory mechanisms are engaged at maximal levels of stimulation. The β-adrenergic increase in cell contraction was also diminished. STAA ventricular myocytes exhibited arrhythmic contractions in response to isoproterenol, and up to 20% of STAA cells failed to sustain contractions when stimulated at 1 Hz. STAA mice have reduced exercise capacity, and cardiac hypertrophy is evident at 3 mo. We conclude that phosphorylation of Ser1700 and Thr1704 is essential for regulation of basal activity of CaV1.2 channels and for up-regulation by β-adrenergic signaling at physiological levels of stimulation. Disruption of phosphorylation at those sites leads to impaired cardiac function in vivo, as indicated by reduced exercise capacity and cardiac hypertrophy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.