Abstract
During mitosis, chromosome alignment depends on the regulated dynamics of microtubules and on motor protein activities. At the kinetochore, the interplay between microtubule-binding proteins, motors, and kinases is poorly understood. Cenp-E is a kinetochore-associated kinesin involved in chromosome congression, but the mechanism by which this is achieved is unclear. Here, we present a study of the regulation of Cenp-E motility by using purified full-length (FL) Xenopus Cenp-E protein, which demonstrates that FL Cenp-E is a genuine plus-end-directed motor. Furthermore, we find that the Cenp-E tail completely blocks the motility of Cenp-E in vitro. This is achieved through direct interaction between its motor and tail domains. Finally, we show that Cenp-E autoinhibition is reversed by MPS1- or CDK1-cyclin B-mediated phosphorylation of the Cenp-E tail. This suggests a model of dynamic control of Cenp-E motility, and hence chromosome congression, dependent upon phosphorylation at the kinetochore.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have