Abstract

The consequences of phosphorylation of the Aβ25-35 peptide at the position Ser26 on its aggregation have not been examined. To investigate them, we performed all-atom replica exchange simulations probing the binding of phosphorylated Aβ25-35 (pAβ25-35) peptides to the dimyristoyl phosphatidylcholine (DMPC) bilayer and their subsequent aggregation. As a control, we used our previous study of unmodified peptides. We found that phosphorylation moderately reduces the helical propensity in pAβ25-35 and its binding affinity to the DMPC bilayer. Phosphorylation preserves the bimodal binding observed for unmodified Aβ25-35, which features a preferred inserted state and a less probable surface bound state. Phosphorylation also retains the inserted dimer with a head-to-tail helical aggregation interface as the most thermodynamically stable state. Importantly, this post-translation modification strengthens interpeptide interactions by adding a new aggregation "hot spot" created by cross-bridging phosphorylated Ser26 with water, cationic ions, or Lys28. The cross-bridging constitutes the molecular mechanism behind most structural phosphorylation effects. In addition, phosphorylation eliminates pAβ25-35 monomers and diversifies the pool of aggregated species. As a result, it changes the binding and aggregation mechanism by multiplying pathways leading to stable inserted dimers. These findings offer a plausible molecular rationale for experimental observations, including enhanced production of low molecular weight oligomers and cytotoxicity of phosphorylated Aβ peptides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call