Abstract

Aβ oligomers are being investigated as cytotoxic agents in Alzheimer's disease (AD). Because of their transient nature and conformational heterogeneity, the relationship between the structure and activity of these oligomers is still poorly understood. Hence, methods for stabilizing Aβ oligomeric species relevant to AD are needed to uncover the structural determinants of their cytotoxicity. Here, we build on the observation that metal ions and metabolites have been shown to interact with Aβ, influencing its aggregation and stabilizing its oligomeric species. We thus developed a method that uses zinc ions, Zn(II), to stabilize oligomers produced by the 42-residue form of Aβ (Aβ42), which is dysregulated in AD. These Aβ42-Zn(II) oligomers are small in size, spanning the 10-30 nm range, stable at physiological temperature, and with a broad toxic profile in human neuroblastoma cells. These oligomers offer a tool to study the mechanisms of toxicity of Aβ oligomers in cellular and animal AD models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.