Abstract

Phosphorylation of the glutamate receptor is an important mechanism of synaptic plasticity. Here, we show that the C terminus of GluR2 of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor is phosphorylated by protein kinase C and that serine-880 is the major phosphorylation site. This phosphorylation also occurs in human embryonic kidney (HEK) cells by addition of 12-O-tetradecanoylphorbol 13-acetate. Our immunoprecipitation experiment revealed that the phosphorylation of serine-880 in GluR2 drastically reduced the affinity for glutamate receptor-interacting protein (GRIP), a synaptic PDZ domain-containing protein, in vitro and in HEK cells. This result suggests that modulation of serine-880 phosphorylation in GluR2 controls the clustering of AMPA receptors at excitatory synapses and consequently contributes to synaptic plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.