Abstract

A strategy that integrates the anammox and hydroxyapatite crystallization in an up-flow anaerobic fixed-bed reactor (UAFB) was investigated to simultaneously remove nitrogen and recover phosphorus. During the 430 days of operation, 73.1 ± 6.6% of influent phosphorus was removed with an efficient nitrogen removal efficiency of 87.8 ± 1.7%. After long-term operation, numerous acicular and micron-sized crystals were observed on the matured biofilm, of which the phosphorus content was around 10.21% (wt%) and hydroxyapatite was the main form of crystals through SEM-EDS, FT-IR and XRD analysis. The variation of substrates along the axial length of UAFB showed that phosphate removal was positively correlated with anammox and pH. Moreover, three anammox bacteria including Candidatus Brocadia (19.73%), Candidatus Jettenia (0.49%) and Candidatus Kuenenia (0.85%) were detected at the bottom of UAFB, while Candidatus Jettenia (4.67%) was dominant at the top. Hence, the anammox-based biofilm system could be alternative for the recovery of phosphorus from nutrient-rich wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.