Abstract
Properly design and fabricate capable electrocatalysts with 3D hierarchical hollow framework to realize cost-effective and efficacious overall water splitting (OWS) are particularly meaningful for the large-scale arrangement of pivotal energy technology. In this study, P-doped NiCo2O4 nanoparticles encapsulated in N-doped carbon hierarchical hollow nanoflowers (P-NiCo2O4@NCHHNFs) were constructed using the hydrothermal-pyrolysis-phosphorization approach. This fascinating architecture can not merely serve as a conductive pathway for electron transfer, but at the same time effectively inhibited the aggregation and corrosion of the NiCo2O4 nanoparticles. Additionally, the P doping not only regulates electronic structure configuration to boost the intrinsic activity of the catalyst, but also enhance electrochemical surface areas to reveal more accessible active sites. Attributing to these characteristics, the as-prepared P-NiCo2O4@NCHHNFs exhibit preeminent electrocatalytic performance with low overpotentials of 283 mV and 162 mV for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) (at 10 mA cm−2), respectively. Specifically, by using the P-NiCo2O4@NCHHNFs as bifunctional catalysts, a low potential of 1.56 V (at 10 mA cm−2) is sufficient to drive overall water splitting with splendid durability. This study proposed an innovative strategy for the conceiving and fabricating high-performance catalysts via heteroatom-doping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.