Abstract

ABSTRACT This study was conducted to determine apparent total tract digestibility (ATTD) of phosphorus (P) and metabolisable energy (ME) concentrations for pigs of 32 different genotypes (n = 8 per grain species) of barley, rye, triticale and wheat. All genotypes were grown at the same location under the same field conditions and were fed to growing castrated crossbred pigs (initial body weight: 31.1 ± 6.95 kg) using a series of duplicate 3 × 3 Latin square designs. A basal ration, which was deficient in P, and 32 experimental rations containing 400 g/kg DM of the basal ration and 600 g/kg DM of the corresponding cereal grain were mixed. Pigs were kept in metabolism crates and the total collection method was used for separate faeces and urine collections with 7-d adaptation and 7-d collection periods. The mean ATTD of P was greater (p < 0.05) for wheat than for triticale, rye or barley (59.4%, 50.4%, 44.9% and 44.4%, respectively, for the mean of each grain species). Within-grain species differences (p < 0.05) among genotypes were obtained for ATTD of P of barley and triticale. The concentrations of ME of triticale and wheat were higher (p < 0.05) than that of barley and rye (16.1 and 16.2 vs. 14.9 and 14.8 MJ ME/kg DM, respectively). Differences in ME concentration among genotypes within a grain species (p < 0.05) were found for barley, triticale and wheat. No differences were found for rye. Compared to literature data the present study showed, in part, considerable differences in ATTD of P and ME concentration. These results should be taken into account for accurate pig ration formulation with regard to minimised P output and efficient use of ME. No significant relationships were detected between ATTD of P and phytic acid concentration or phytase activity in the grain genotypes in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.