Abstract

Differences in soil phosphorus (P) contents measured by various techniques may have implications for agronomic and environmental testing. Reduced-tillage systems combined with surface manure application increase the potential risk of nutrient losses by surface runoff. A field trial was conducted to evaluate the effect of livestock slurry on nutrient accumulation at the surface layer of an acidic soil rich in organic matter with excess P levels and loamy texture. Two reduced-tillage systems, no tillage (NT) and minimum tillage (MT), and four different fertilizer treatments were assessed. The amounts of P extracted by anion-exchange resin (AER) and by Mehlich 3 (M3) were compared; in addition, differences between two determination methods of P contents extracted by Mehlich 3, namely molybdic acid colorimetric standard procedure (M3-COL) and inductively coupled plasma–mass spectroscopy (M3-ICP), were evaluated. Ninety-six soil samples were taken from the 0- to 5-cm surface layer in three successive dates after increasing manure addition. Colorimetric Mehlich 3 P ranged from 49 to 431 mg dm–3. The ranks of mean extractable soil P concentrations were AER < M3-COL < M3-ICP. The linear correlation coefficient between M3-COL and M3-ICP was highly significant (R2 = 0.89; P < 0.01), but a two-straight-lines model or a quadratic relationship were more adequate for describing the dependence between the two determination procedures after M3 extraction. Relative and absolute differences between M3-COL and M3-ICP showed a tendency to increase as organic carbon content increased. Phosphorus content extracted by AER and M3-COL or M3-ICP reported a significant but much less predictable relationship with R2 values of 0.27 and 0.21 (n = 96), respectively. The P in the surface layer accumulated more under NT than under MT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call