Abstract
ABSTRACTSemiarid soils are subjected to wetting and drying cycles which influence sorption and desorption of applied phosphorus fertilizer. Phosphorus desorption was determined in soils from toposequences of two soil groups (Ferralsol and Luvisol) from a semiarid area, subjected to wetting and drying cycles. Samples from surface and subsurface horizons of upslope, midslope, and downslope positions were incubated for 4 months with phosphorus doses corresponding to 0, 5, 10, 25, 50, 75, and 100% of the maximum adsorption capacity, under constant moisture (80% water retention capacity) or 12 cycles of wetting and drying. Phosphorus desorption was lower in the Ferralsol than in the Luvisol, and lower in the subsurface than in the surface horizons, probably due to greater clay, Fe, and Al oxides contents, but they were similar among slope positions, of same mineralogy. Desorption tended to be greater in samples submitted to wetting and drying cycles but differences were small. P recovery reached 40–50% in the Luvisol, and 30–40% in the Ferralsol. The relatively low P retention capacity suggests a high residual effect of the P applied. Therefore, in relation to P losses, water retention techniques are less important than those that prevent soil erosion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have