Abstract

The aromatic PO2 complexes of meso-triaryl-25-oxasmaragdyrins were synthesized by treating the free base 25-oxasmaragdyrins with POCl3 in toluene/triethylamine at refluxing temperature. The complexes are stable and characterized by X-ray and different spectroscopic techniques. In these complexes, the phosphorus(V) ion was bound to two pyrrolic nitrogen atoms of the smaragdyrin macrocycle and two oxygen atoms in tetrahedral geometry. The X-ray structure revealed that the smaragdyrin macrocycle showed significant distortion upon insertion of a PO2 unit, and the phosphorus atom lies 1.339 Å above the mean plane defined by three meso-carbon atoms of the macrocycle. These complexes absorb strongly in the visible region and are 2.5 times more strongly fluorescent than free base 25-oxasmaragdyrins. The smaragdyrin macrocycle becomes electron-deficient upon complexation with a PO2 unit because these complexes are easier to reduce but difficult to oxidize compared to free base smaragdyrins. We designed and synthesized a covalently linked BODIPY-PO2-smaragdyrin dyad and demonstrated efficient energy transfer from the BODIPY unit to the PO2-smaragdyrin unit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.