Abstract

The hetero-Pacman architecture places two different metal coordination sites in close proximity, which can support efficient energy and/or electron transfer and allow for cooperative activation of small molecules. Here, the synthesis of dyads consisting of a porphyrin unit as photosensitizer and a rhenium unit as catalytically active site, which are held together by the rigid xanthene backbone, is presented. Mononuclear [(NN)Re(CO)3 (Cl)] complexes for CO2 reduction in which NN represents a bidentate diimine ligand (e.g., bipyridine or phenanthroline) lack light absorption in the visible region, resulting in poor photocatalysis upon illumination with visible light. To improve their visible-light absorption, we have focused on the incorporation of a strongly absorbing free base or zinc porphyrin unit. Resulting photocatalytic experiments showed a strong dependence of the catalytic performance on both the type of photosensitizer and the excitation wavelengths. Most notably, the intramolecular hetero-Pacman system containing a zinc porphyrin unit showed much better catalytic activity in the visible region (excitation wavelengths >450 nm) than the free base porphyrin version or the corresponding mononuclear rhenium compound or an intermolecular system comprised of a 1:1 mixture of the mononuclear analogues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.