Abstract

The behavior of phosphorous transfer from P2O5-containing CaO–SiO2–FetO slags to 2CaO·SiO2 particles homogeneously dispersed in slag has been studied by using a microprobe analysis. The maximum phosphorus distribution ratio between 2CaO·SiO2 particle and slag is obtained at the nose composition of 2CaO·SiO2 primary phase region in CaO–SiO2–FetO phase diagram and the temperature dependence of this distribution ratio is small. The phosphorous transfer rate from slag to a 2CaO·SiO2 particle with 20 to 50 µm is considerably fast and a 2CaO·SiO2 particle changes to the particle with the composition of 2CaO·SiO2–3CaO·P2O5 solid solution within 5 s. In the case of particles present in cluster, only the rim part (5 µm) of a particle changes to the composition of 2CaO·SiO2–3CaO·P2O5 solid solution within 5 s, but small size particles with 3 to 8 µm completely change to the particles with the composition of 2CaO·SiO2–3CaO·P2O5 solid solution within 5 s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.