Abstract

Separating P2O5 from steelmaking slag is the key to achieving optimum resource utilization of slag. If the P-concentrating 2CaO∙SiO2–3CaO∙P2O5 solid solution was effectively separated, it can be a potential phosphate resource and the remaining slag rich in Fe2O3 and CaO can be reutilized as a flux in steelmaking process. In this study, a low-cost method of selective leaching was adopted, and hydrochloric acid was selected as leaching agent. The dissolution behavior of quenched steelmaking slags with different composition in the acidic solution was investigated and the dissolution mechanism was clarified. It was found that the P dissolution ratio from each slag was higher than those of other elements, achieving an effective separation of P and Fe. The dissolution ratios of P, Ca, and Si decreased as the P2O5 content in slag increased. A higher Fe2O3 content in slag led to a lower P dissolution ratio. Increasing slag basicity facilitated the dissolution of P from slag. The residue mainly composed of matrix phase and the P2O5 content decreased significantly through selective leaching. The P dissolution ratio from slag was primarily determined by the P distribution ratio in the 2CaO∙SiO2–3CaO∙P2O5 solid solution and the precipitation of ferric phosphate in the leachate. The P-concentrating solid solution was effectively separated from quenched steelmaking slag, even though hydrochloric acid was used as leaching agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call