Abstract
The folding of long DNA strands into designed nanostructures has evolved into an art. Being based on linear chains only, the resulting nanostructures cannot readily be transformed into covalently linked frameworks. Covalently linking strands in the context of folded DNA structures requires a robust method that avoids sterically demanding reagents or enzymes. Here we report chemical ligation of the 3'-amino termini of oligonucleotides and 5'-phosphorylated partner strands in templated reactions that produce phosphoramidate linkages. These reactions produce inter-nucleotide linkages that are isoelectronic and largely isosteric to phosphodiesters. Ligations were performed at three levels of complexity, including the extension of branched DNA hybrids and the ligation of six scaffold strands in a small origami.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.