Abstract
AbstractPremiseA multi‐omic approach was used to explore proteins and networks hypothetically important for establishing filament dimorphisms in heterostylous Turnera subulata (Sm.) as an exploratory method to identify genes for future empirical research.MethodsMass spectrometry (MS) was used to identify differentially expressed proteins and differentially phosphorylated peptides in the developing filaments between the L‐ and S‐morphs. RNAseq was used to generate a co‐expression network of the developing filaments, MS data were mapped to the co‐expression network to identify hypothetical relationships between the S‐gene responsible for filament dimorphisms and differentially expressed proteins.ResultsMapping all MS identified proteins to a co‐expression network of the S‐morph's developing filaments identified several clusters containing SPH1 and other differentially expressed or phosphorylated proteins. Co‐expression analysis clustered CDKG2, a protein that induces endoreduplication, and SPH1—suggesting a shared biological function. MS analysis suggests that the protein is present and phosphorylated only in the S‐morph, and thus active only in the S‐morph. A series of CDKG2 regulators, including ATM1, and cell cycle regulators also correlated with the presence of reciprocal herkogamy, supporting our interest in the protein.ConclusionsThis work has built a foundation for future empirical work, specifically supporting the role of CDKG2 and ATM1 in promoting filament elongation in response to SPH1 perception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.