Abstract

Phosphorus-modified all-silica zeolites exhibit activity and selectivity in certain Brønsted acid catalyzed reactions for biomass conversion. In an effort to achieve similar performance with catalysts having well-defined sites, we report the incorporation of Brønsted acidity to metal-organic frameworks with the UiO-66 topology, achieved by attaching phosphonic acid to the 1,4-benzenedicarboxylate ligand and using it to form UiO-66-PO3 H2 by post-synthesis modification. Characterization reveals that UiO-66-PO3 H2 retains stability similar to UiO-66, and exhibits weak Brønsted acidity, as demonstrated by titrations, alcohol dehydration, and dehydra-decyclization of 2-methyltetrahydrofuran (2-MTHF). For the later reaction, the reported catalyst exhibits site-time yields and selectivity approaching that of phosphoric acid on all-silica zeolites. Using solid-state NMR and deprotonation energy calculations, the chemical environments of P and the corresponding acidities are determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call