Abstract

The biosynthesis of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS) by base-exchange reactions, and of PC and PE by the CDP pathways, was assessed in the membrane phospholipids of human leukocytes (neutrophils, lymphocytes, T lymphocytes, non-T lymphocytes, and monocytes). Of the three base-exchange activities, ethanolamine exchange was the highest and choline exchange the lowest in each leukocyte membrane. In the CDP pathways, ethanolaminephosphotransferase (EPT) and cholinephosphotransferase (CPT) had comparable activities. Among subpopulations of leukocytes, T lymphocytes showed the highest levels of each enzyme activity, and neutrophils showed the least. In contrast to the enzymes of the CDP pathways, each base-exchange activity was directly proportional to the Ca 2+ concentration, but markedly inhibited by Mg 2+. Despite this Ca 2+ dependence, the base-exchange activities were increased in a dose-dependent manner by calmodulin antagonists and, except for ethanolamine exchange, inhibited by the addition of calmodulin; EPT and CPT activities were only slightly inhibited by calmodulin antagonists and were unaffected by calmodulin. PE formation in both neutrophil and lymphocyte base-exchange reactions was enhanced in a dose-dependent manner by the presence of low concentrations of bioactive stimulants (zymosan, 0.05–0.2 mg/ml; Con A, 0.5–2μg/ml), while EPT and CPT activities were not increased by these cell stimulants. Taken together, our data suggest that base-exchange activity, the biological significance of which has been hitherto unclear, may be related to cell activation; in contrast, the CDP pathways appear primarily to involve the constitutive biosynthesis of phospholipids. Our data further suggest that ethanolamine required for base-exchange reactions is a precursor of PE, N-transmethylation of which can serve as a source of cell activation, leading to production of arachidonic through PC by mediation of phospholipase A 2 activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call