Abstract
Intercellular communication in non-excitable cells is restricted to a limited range close to the signal source. Here, we have examined whether modification of the intracellular microenvironment could prolong the spatial proposition of signal generation and could increase cell proliferation. Mathematical models and experimental studies of endothelial repair after controlled mechanical injury were used. The models predict the diffusion range of injury-released growth factors and identify important parameters involved in a signalling regenerative mode. Transfected human umbilical vein endothelial cells (HUVECs) were used to validate model results, by examining intercellular calcium signalling range, cell proliferation and wound healing rate. The models predict that growth factors have a limited capacity of extracellular diffusion and that intercellular signals are specially sensitive to cell phospholipase C-delta (PLCdelta) levels. As basal PLCdelta levels are increased by transfection, a significantly increased intercellular calcium range, enhanced cell proliferation, and faster wound healing rate were observed. Our in silico and in vitro studies demonstrated that non-excitable endothelial cells respond to stimuli in a complex manner, in which intercellular communication is controlled by physicochemical properties of the stimulus and by the cell microenvironment. Such findings may have profound implications for our understanding of the tight nature of autocrine cell growth control, compensation to stress states and response to altered microenvironment, under pathological conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.