Abstract

Cisplatin is one of the most widely used chemotherapeutic agents and induces caspase-9-mediated apoptosis. Here, we examined whether phospholipase C-related catalytically inactive protein (PRIP) enhances cisplatin-induced apoptosis of breast cancer cells. PRIP depletion increased expression of X-linked inhibitor of apoptosis protein (XIAP) by inhibiting protein degradation, which is downstream of the phosphatidylinositol 3-kinase/AKT pathway and inhibits apoptotic signaling by blocking caspase-9 activation. Conversely, the viability of MCF-7 cells transfected with Prip1 was significantly lower than that of control cells in the presence of cisplatin. The number of apoptotic nuclei and expression levels of cleaved caspase-9 and downstream cleaved caspase-7 and poly-ADP ribose polymerase were greater in PRIP1-expressing MCF-7 cells treated with cisplatin than in control cells. XIAP was decreased by expression of pleckstrin homology domain of PRIP1 (PRIP1-PH domain) that blocked phosphatidylinositol 4,5 bisphosphate metabolism. In an orthotopic transplantation model, combined administration of PRIP1-PH domain-containing liposomes and cisplatin reduced the size of MCF-7 tumors compared with cisplatin alone. Our findings demonstrate that PRIP promotes XIAP degradation by inhibiting PI(3,4,5)P3/AKT signaling and enhances cisplatin-induced apoptotic cell death. Therefore, we propose that PRIP1-PH liposomes are a novel agent to avoid cisplatin resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call