Abstract
Phosphoinositide phosphates, PtdInsP, are important components of the cell lipid pool that can function as messengers in diverse cellular processes. Lack of information on downstream targets, however, has impeded our understanding of the potential of lipid-signaling to influence gene activity. Our goals here were to identify genes that altered expression in the presence of two isomeric monophosphate lipid messengers (Phosphoinositide 5-Phosphate, PtdIns(5)P, and Phosphoinositide 4-Phosphate, PtdIns(4)P) and to establish whether the two lipids influence distinct or overlapping gene-sets. Our results indicated that PtdIns(5)P and PtdIns(4)P affected genes within shared gene-families but that each messenger influenced the expression of different members within the same family. These results suggested that PtdIns(5)P and PtdIns(4)P participate in separate pathways that, ultimately, may control gene expression. The pathways may have points of convergence but may also counteract each other's effects. A significant fraction (∼40%) of the PtdIns(5)P-stimulated genes belong to various families of wall-modifying genes. Wall-modifying activities are recognized as factors affecting cell extension and plant growth. Elevated PtdIns(5)P concentration influenced stem growth and the effects were different from those triggered by PtdIns(4)P. The data allow insights into plants' response to two related PtdInsP at whole-plant/genome-wide levels and demonstrate that PtdIns(5)P-and PtdIns(4)P-involving mechanisms are distinct, selective and specific.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have