Abstract

We developed a monoclonal antibody specific to phosphatidic acid (PA). Using this antibody, a novel method to quantify trace amounts of PA was achieved. With the method, PA can be measured in the range of 20-500 pmol. We applied this method to quantify changes in PA levels in Balb/c 3T3 cells stimulated by platelet-derived growth factor. PA contents were very low in quiescent cells and dramatically increased with time up to 15 min. On the other hand, a biphasic diacylglycerol (DG) increase was found. The early phase showed a transient small peak of DG at 30 s followed by a decrease to 1 min. In the second phase, DG accumulated gradually but very markedly up to 15 min. Treatment with propranolol, a PA phosphohydrolase inhibitor, enhanced the accumulation of PA and inhibited the formation of DG in the second phase. However, R59022, a DG kinase inhibitor, did not influence the accumulation of DG or PA, suggesting that platelet-derived growth factor stimulates mainly phospholipase D-catalyzed hydrolysis of phospholipids rather than phospholipase C-catalyzed hydrolysis in the second phase. PA, even after contaminating lyso-PA was removed, could stimulate DNA synthesis, although lyso-PA was 25 times more potent. Moreover, phospholipase D was found to be a much stronger mitogen than phospholipase C. Phospholipase D treatment caused a biphasic accumulation of PA. PA levels reached a maximum at 1 h, and then decreased between 1 and 2 h; finally, there was a gradual elevation up to 10 h. In this case, there was no significant DG accumulation. On the other hand, phospholipase C treatment induced only DG accumulation without any significant change in PA. These results indicate that PA accumulation, rather than an increase in DG, correlates well with mitogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.