Abstract

The adsorption of deoxyribonucleic acid (DNA) and its constituents – phosphate and nucleotides on the surface of nanocrystalline cerium dioxide (pHpzc = 6.3) in NaCl solutions was investigated using multi batch adsorption experiments over a wide range pH. The adsorption data of inorganic phosphate, and nucleotides were interpreted as a formation of outer and inner sphere surface complexes in term of the Basic Stern surface complexation model. The comparison of adsorptions of DNA, phosphate and nucleotides has revealed that double-stranded DNA is mainly adsorbed with the participation of phosphate backbone of its molecule. The approach of DNA to the oxide surface due to the electrostatic attraction promotes other types of interaction, e.g. dispersion interaction and hydrogen bonding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.