Abstract

In a scanning tunneling microscope (STM) electrochemical cell we have studied the effects of electrode potential on both the surface topography and the adsorption of deoxyribonucleic acid (DNA) to graphite and gold surfaces. Images of the surface of highly oriented pyrolytic graphite (HOPG), of the same area, in response to a positive increase in surface potential show degradation of the step edges with little change in the crystal plane. Images of the same area of a gold surface demonstrate the formation of and the progressive increase in nodular structures on the crystal planes, in response to increased potential, with little effect on the step edges. Using radio-labeled DNA we monitored electrochemical absorption onto HOPG and gold surfaces. Although at no applied potential and at negative surface potentials some DNA was bound, at positive potentials 3 to 5 times more DNA was incorporated onto both surfaces. DNA adsorbed to a surface at a positive potential was not removed by reversing the potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.