Abstract

Hyperphosphatemia is thought to underlie medial vascular calcification in advanced renal failure, but calcification can occur in other conditions in the absence of hyperphosphatemia, indicating that additional factors are important. To identify these factors, a model of medial calcification in rat aorta in vitro was developed. Aortic rings from rats were incubated in serum-free medium for 9 d, and calcification was measured as incorporation of (45)Ca and confirmed by histology and x-ray diffraction. No calcification occurred in normal vessels despite elevated free Ca(2+) and PO(4)(3-) concentrations of 1.8 mM and 3.8 mM, respectively, but mechanical injury resulted in extensive calcification in the media. Co-incubation studies revealed that normal aortas produced a soluble inhibitor of calcification in injured vessels that was destroyed by alkaline phosphatase. Culture of normal aortas with alkaline phosphatase resulted in calcification of the elastic lamina identified as hydroxyapatite by x-ray diffraction. This effect of alkaline phosphatase was not due to dephosphorylation of osteopontin (OPN), and calcification was not increased in aortas from OPN-deficient mice. The inhibitor was identified as pyrophosphate on the basis of the calcification induced in aortas cultured with inorganic pyrophosphatase, the inhibition of calcification in injured aortas by pyrophosphate, and the production of inhibitory levels of pyrophosphate by normal aortas. No calcification occurred under any conditions at a normal PO(4)(3-) concentration. It is concluded that elevated concentrations of Ca(2+) and PO(4)(3-) are not sufficient for medial vascular calcification because of inhibition by pyrophosphate. Alkaline phosphatase can promote calcification by hydrolyzing pyrophosphate, but OPN is not an endogenous inhibitor of calcification in rat aorta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.