Abstract
Hydrogen peroxide (H2O2) is one of the most important reactive oxygen species (ROS). Increased endogenous H2O2 levels indicate oxidative stress and could be a potential marker of many diseases, including Alzheimer's, cardiovascular diseases, and diabetes. However, consuming H2O2-incorporated food has adverse effects on humans and is a serious health concern. We used salmon testes DNA with bio-inspired activated carbon (AC) as an electrocatalyst for developing a novel H2O2 sensor. The phosphate backbone of DNA contains negatively charged oxygen groups that specifically attract protons from H2O2 reduction. We observed a linearity range of 0.01-250.0μM in the H2O2 reduction peak current with a detection limit of 2.5 and 45.7nM for chronoamperometric and differential pulse voltammetric studies. High biocompatibility of the sensor was achieved by the DNA, facilitating endogenous H2O2 detection. Moreover, this non-enzymatic sensor could also help in the rapid screening of H2O2-contaminated foods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.