Abstract

Experiments performed at micromolar concentrations of inorganic phosphate support the conclusion that liver phosphofructokinase 2 would be completely inactive in the absence of inorganic phosphate or arsenate. The concentration of inorganic phosphate that allowed half-maximal activity decreased with increasing pH, being approximately 0.11 mM at pH 6.5 and 0.05 mM at pH 8. The effect of phosphate was to increase V and to decrease Km for fructose 6-phosphate, without affecting Km for ATP. Citrate and P-enolpyruvate inhibited the enzyme non-competitively with fructose 6-phosphate and independently of the concentration of inorganic phosphate. Phosphorylation of the enzyme by the catalytic subunit of cyclic-AMP-dependent protein kinase did not markedly modify the phosphate requirement and its effect of inactivating phosphofructokinase 2 could not be counteracted by excess phosphate. A nearly complete phosphate dependency was also observed with phosphofructokinase 2 purified from Saccharomyces cerevisiae or from spinach leaves. By contrast, the fructose 2,6-bisphosphatase activity of the liver bifunctional enzyme was not dependent on the presence of inorganic phosphate. Phosphate increased this activity about threefold when measured in the absence of added fructose 6-phosphate and a half-maximal effect was reached at approximately 0.5 mM phosphate. Like glycerol phosphate, phosphate counteracted the inhibition of fructose 2,6-bisphosphatase by fructose 6-phosphate, but a much higher concentration of phosphate than of glycerol phosphate was required to reach this effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call