Abstract

Alkylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase with p-mercuribenzoate caused a rapid stimulation of the kinase and an inhibition of the bisphosphatase. At later times, the kinase activity also became inhibited. In contrast, treatment with N-ethylmaleimide abolished kinase activity but had no effect on the bisphosphatase. Selective modification of residues involved in the kinase reaction was also seen with iodoacetamide, which caused a 10-fold stimulation of the kinase Vmax without affecting the bisphosphatase. The stimulatory effect of carboxyamidomethylation was seen when the kinase was assayed in the presence of inorganic phosphate, an allosteric activator of the enzyme. The iodoacetamide-treated enzyme had a 10-20-fold higher Km for fructose 6-phosphate than the native enzyme and the Ki for fructose 2,6-bisphosphate was also increased. However, the adenine-nucleotide site did not seem to be affected since there was no change in the Km for ATP, the Ki for ADP, or the adenine-nucleotide exchange. There was also a direct correlation between the incorporation of [14C]acetamide into the enzyme and activation of the kinase. The residues modified by iodoacetamide were shown to be cysteines by the exclusive appearance of carboxymethylcysteine in protein hydrolysates. Activation was associated with alkylation of 2 cysteines/subunit, of the 12 which could be alkylated after denaturation/reduction. Iodoacetamide-activated kinase was inhibited by ascorbate/Fe3+, which has been shown to modify sulfhydryl groups in the native enzyme, with concomitant loss of kinase activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call