Abstract

To evaluate the adsorption mechanism and performance of phosphate onto the composite of low-cost biochar and iron oxide, four biochar-iron oxides, namely biochar-magnetite (BC-M), biochar-ferrihydrite (BC-F), biochar-goethite (BC-G), and biochar-hematite (BC-H), were prepared by fabricating iron oxide to porous biochar. The biochar-iron oxides had huge surface areas of 691-864m2/g and average pore diameters of 3.4-4.0nm. Based on the characterization analysis of FTIR, XRD, XPS, and zeta potential, the interactions of electrostatic attraction, ligand exchange, and deposition dominated the phosphate adsorption onto biochar-iron oxides. The maximum adsorption capacity of phosphate followed the order of BC-G > BC-F > BC-H > BC-M. The isotherm data of BC-M and BC-H were well fitted by the Langmuir and Freundlich models, while those of BC-G and BC-F followed the Langmuir model. In addition, BC-M, BC-F, BC-G, and BC-H owned excellent regeneration ability and adsorption performance in practical (simulated) wastewater environment. Then the biochar-iron oxides exerted extensive and satisfactory prospect in wastewater remediation and recycling application in soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.