Abstract

Contraction of bladder smooth muscle is predominantly initiated by M3 muscarinic receptor-mediated activation of the Gq/11-phospholipase C β-protein kinase C (PKC) and the G12/13-RhoGEF-Rho kinase (ROCK) pathways. However, these pathways and their downstream effectors are not well understood in bladder smooth muscle. We used phorbol 12,13-dibutyrate (PDBu), and 1,2-dioctanoyl-sn-glycerol (DOG), activators of PKC, in this investigation. We were interested in dissecting the role(s) of PKC and to clarify the signaling pathways in bladder smooth muscle contraction, especially the potential cross-talk with ROCK and their downstream effectors in regulating myosin light chain phosphatase activity and force. To achieve this goal, the study was performed in the presence or absence of the PKC inhibitor bisindolylmaleimide-1 (Bis) or the ROCK inhibitor H-1152. Phosphorylation levels of Thr38-CPI-17 and Thr696/Thr850 myosin phosphatase target subunit (MYPT1) were measured during PDBu or DOG stimulation using site specific antibodies. PDBu-induced contraction in bladder smooth muscle involved both activation of PKC and PKC-dependent activation of ROCK. CPI-17 as a major downstream effector, is phosphorylated by PKC and ROCK during PDBu and DOG stimulation. Our results suggest that Thr696 and Thr850-MYPT1 phosphorylation are not involved in the regulation of a PDBu-induced contraction. The results also demonstrate that bladder smooth muscle contains a constitutively active isoform of ROCK that may play an important role in the regulation of bladder smooth muscle basal tone. Together with the results from our previous study, we developed a working model to describe the complex signaling pathways that regulate contraction of bladder smooth muscle.

Highlights

  • It is well accepted that phosphorylation of the 20-kDa regulatory myosin light chain (MLC), catalyzed by the Ca2+/calmodulin dependent MLC kinase and dephosphorylation catalyzed by the MLC phosphatase, play a primary role in the regulation of smooth muscle contraction and relaxation (Sobieszek, 1977; for reviews see Kamm and Stull, 1985; Somlyo and Somlyo, 1994)

  • Inhibition of the MLC phosphatase can result from either protein kinase C (PKC)catalyzed phosphorylation of CPI-17 or Rho kinase (ROCK)catalyzed phosphorylation of the myosin phosphatase target subunit (MYPT1)

  • Our results demonstrated that phosphorylation of both CPI-17 and MYPT1, effectors of the PKC and ROCK pathways respectively, are involved in the regulation of carbachol-dependent bladder smooth muscle contraction (Wang et al, 2009)

Read more

Summary

Introduction

It is well accepted that phosphorylation of the 20-kDa regulatory myosin light chain (MLC), catalyzed by the Ca2+/calmodulin dependent MLC kinase and dephosphorylation catalyzed by the MLC phosphatase, play a primary role in the regulation of smooth muscle contraction and relaxation (Sobieszek, 1977; for reviews see Kamm and Stull, 1985; Somlyo and Somlyo, 1994). Inhibition of the MLC phosphatase can result from either protein kinase C (PKC)catalyzed phosphorylation of CPI-17 or Rho kinase (ROCK)catalyzed phosphorylation of the myosin phosphatase target subunit (MYPT1). Both pathways play key roles in the enhancement of myofilament Ca2+ sensitivity (Eto et al, 1995, 2004; Hartshorne, 1998; Kitazawa et al, 2000; Somlyo and Somlyo, 2003). Studies in bladder smooth muscle are not as numerous and our understanding of the mechanisms underlying Ca2+ sensitization in bladder is significantly less

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.