Abstract

The parasitoid fly Emblemasoma auditrix locates its hosts using acoustic cues from sound producing males of the cicada Okanagana rimosa. Here, we experimentally analysed the flight path of the phonotaxis from a landmark to the target, a hidden loudspeaker in the field. During flight, the fly showed only small lateral deviations. The vertical flight direction angles were initially negative (directed downwards relative to starting position), grew positive (directed upwards) in the second half of the flight, and finally flattened (directed horizontally or slightly upwards), typically resulting in a landing above the loudspeaker. This phonotactic flight pattern was largely independent from sound pressure level or target distance, but depended on the elevation of the sound source. The flight velocity was partially influenced by sound pressure level and distance, but also by elevation. The more elevated the target, the lower was the speed. The accuracy of flight increased with elevation of the target as well as the landing precision. The minimal vertical angle difference eliciting differences in behaviour was 10°. By changing the elevation of the acoustic target after take-off, we showed that the fly is able to orientate acoustically while flying.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call