Abstract
While graphene grain boundaries (GBs) are well characterized experimentally, their influence on transport properties is less understood. As revealed here, phononic thermal transport is vulnerable to GBs even when they are ultra‐narrow and aligned along the temperature gradient direction. Non‐equilibrium molecular dynamics simulations uncover large reductions in the phononic thermal conductivity (κ p) along linear GBs comprising periodically repeating pentagon‐heptagon dislocations. Green's function calculations and spectral energy density analysis indicate that the origin of the κ p reduction is hidden in the periodic GB strain field, which behaves as a reflective diffraction grating with either diffuse or specular phonon reflections, and represents a source of anharmonic phonon–phonon scattering. The non‐monotonic dependence with dislocation density of κ p uncovered here is unaccounted for by the classical Klemens theory. It can help identify GB structures that can best preserve the integrity of the phononic transport.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have