Abstract

In this study, we have investigated the band structure of elastic waves propagating in a phononic crystal, consisting of an epoxy matrix reinforced by Al2O3 inclusions in a square and hexagonal lattices. We also studied the influence of the inclusion geometry cross section – circular, hollow circular, square and rotated square with a 45° angle of rotation with respect to the x, y axes. The plane wave expansion (PWE) method is used to solve the wave equation considering the wave propagation in the xy plane (longitudinal-transverse vibration, XY mode, and transverse vibration, Z mode). The complete band gaps between the XY and Z modes are observed to circular, square and rotated square cross section inclusion and the best performance is for rotated square cross section inclusion in a square lattice. We suggest that the Al2O3/epoxy composite is feasible for vibrations management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call