Abstract

Abstract We investigate the phonon thermal transport properties in InAs nanowires with different size and growth directions by using nonequilibrium molecular dynamics methods. The results show a remarkable anisotropy for the thermal conductivity in InAs nanowire. It is found that the thermal conductivity along [110] growth direction is about three times larger than that along [100] or [111] direction. With the increase of temperature, the thermal conductivity along [110] direction decreases significantly. However, the thermal conductivity along other two directions is not sensitive to temperature. Moreover, we find a crossover from ballistic to ballistic-diffusive thermal transport for a certain length of InAs nanowire. A brief physical analysis of these results is given. It is suggested that the anisotropy of thermal conductivity is common for nanowires with zinc blende structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.