Abstract
Zirconia has a number of remarkable properties, including a very low thermal conductivity. In this research, the phonon thermal conductivity of two phases (cubic and monoclinic) of zirconia (ZrO2) are calculated. For this purpose, an equilibrium molecular dynamics simulation employing the Green-Kubo formalism is used. The results are presented in detail over a wide temperature range, from 100 K to 2400 K and 100 K to 1400 K for the above-mentioned structures, respectively, with a 100K temperature step. The temperature dependence of the equilibrium atomic volume demonstrated a reasonable agreement with the experimental data. Moreover, the lattice thermal conductivity was calculated by analysing the heat current autocorrelation function. The results showed that zirconia has a low thermal conductivity that is dependent on the temperature. It was also shown that the lattice thermal conductivity of the two phases of zirconia can be decomposed into three contributions due to the acoustic shortrange and long-range phonon and optical phonon modes. Finally, the results from this research are compared with the available experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.