Abstract

The impact of acoustic and optical phonon scattering on the performance of CNT-FETs is investigated using a full-quantum transport model within the NEGF formalism. Different gate lengths, dielectric materials and chiralities are considered. It is shown that the use of a high-κ dielectric lowers the off-current dominated by phonon-assisted band-to-band tunneling. The device scalability is demonstrated: with the oxide thickness fixed to 1.5nm, good performance is obtained with 15nm and 10nm gate lengths with SiO2 and HfO2 gate dielectrics, respectively. The role of phonon scattering in CNT-FETs of different chiralities is investigated for the HfO2 devices. A similar analysis has also been carried out for source/drain underlap geometries. The results confirm that the calculation of the off-currents and delay times is strongly influenced by phonon scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.