Abstract
In this paper, using the Boltzmann transport equation, we study the zero temperature resistance of perfect metallic crystals of a finite thickness d along which a weak constant electric field E is applied. This resistance, hereinafter referred to as the phonon residual resistance, is caused by the inelastic scattering of electrons heated by the electric field, with emission of long-wave acoustic phonons and is proportional to [Formula: see text]. Consideration is carried out for Cu, Ag and Au perfect crystals with the thickness of about 1 cm, in the fields of the order of 1 mV/cm. Following the Matthiessen rule, the resistance of the pure crystals, the thicknesses of which are much larger than the electron mean free path is represented as the sum of both the impurity and phonon residual resistances. The condition on the thickness and field is found at which the low-temperature resistance of pure crystals does not depend on their purity and is determined by the phonon residual resistivity of the ideal crystals. The calculations are performed for Cu with a purity of at least 99.9999%.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have