Abstract

Photonic gauge potentials are crucial for manipulating charge-neutral photons like their counterpart electrons in the electromagnetic field, allowing the analogous Aharonov–Bohm effect in photonics and paving the way for critical applications such as photonic isolation. Normally, a gauge potential exhibits phase inversion along two opposite propagation paths. Here we experimentally demonstrate phonon-induced anomalous gauge potentials with noninverted gauge phases in a spatial-frequency space, where near-phase-matched nonlinear Brillouin scatterings enable such unique direction-dependent gauge phases. Based on this scheme, we construct photonic isolators in the frequency domain permitting nonreciprocal propagation of light along the frequency axis, where coherent phase control in the photonic isolator allows switching completely the directionality through an Aharonov–Bohm interferometer. Moreover, similar coherent controlled unidirectional frequency conversions are also illustrated. These results may offer a unique platform for a compact, integrated solution to implement synthetic-dimension devices for on-chip optical signal processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call