Abstract

We use molecular dynamics simulations to calculate the phonon energy emitted during rapid crack propagation in brittle crystals. We show that this energy is different for different crack planes and propagation directions and that it is responsible for various phenomena at several length scales: energetically preferred crack systems and crack deflection at the atomic scale, reduced maximum crack speed with volume at the micrometer scale, and the inability of a crack to attain the theoretical limiting speed at the macroscale. We propose to include the contribution of this energy in the Freund equation of motion of a dynamically propagating crack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.